Аннотация:
Доказывается аналитичность функций, удовлетворяющих условиям Коши–Римана и имеющих суммируемый модуль. Тем самым обобщаются теоремы Лумана–Меньшова и Толстова. Обобщается (с класса ограниченных на класс $L_1$) одна теорема Линделёфа для некоторых типов областей. Изучаются достаточные признаки непрерывности на границе для некоторых классов аналитических функций.
Библиография: 21 название.