RUS  ENG
Полная версия
ЖУРНАЛЫ // Математический сборник // Архив

Матем. сб., 1997, том 188, номер 5, страницы 21–32 (Mi sm224)

Эта публикация цитируется в 22 статьях

Структура спектра оператора Шрёдингера с магнитным полем в полосе и бесконечнозонные потенциалы

В. А. Гейлер, М. М. Сенаторов

Мордовский государственный университет имени Н. П. Огарева

Аннотация: Пусть $H=-d^2/dx^2+V(x+p)$ – оператор Штурма–Лиувилля на отрезке $[a,b]$ с нулевыми граничными условиями на концах отрезка; здесь $V$ – строго выпуклая функция класса $C^2$ на всей числовой прямой $\mathbb R$, $p$ – произвольный числовой параметр. Исследуется поведение собственных чисел оператора $H$ в зависимости от $p$. К такому исследованию сводится спектральный анализ оператора Шрёдингера с магнитным полем в полосе с граничными условиями Дирихле на границе полосы. В качестве следствия основного результата получается такая теорема.
Пусть $V_1$ – сужение функции $V$ на отрезок $[a,b)$, $u$ – периодическое продолжение функции $V_1$ на всю числовую ось (с периодом $b-a$). Тогда в спектре периодического оператора Шрёдингера $-d^2/dx^2+u(x)$ все лакуны ненулевые.
Библиография: 19 названий.

УДК: 517.983

MSC: 35P20, 35Q55

Поступила в редакцию: 22.04.1996

DOI: 10.4213/sm224


 Англоязычная версия: Sbornik: Mathematics, 1997, 188:5, 657–669

Реферативные базы данных:


© МИАН, 2024