RUS  ENG
Полная версия
ЖУРНАЛЫ // Математический сборник // Архив

Матем. сб., 1997, том 188, номер 7, страницы 93–106 (Mi sm246)

Эта публикация цитируется в 26 статьях

Об ограниченности операторов Харди и Харди–Литлвуда в пространствах $\operatorname {Re}H^1$ и $\mathrm {BMO}$

Б. И. Голубов

Московский физико-технический институт (государственный университет)

Аннотация: В работе доказано, что оператор Харди $\mathscr H$ ограничен в пространстве $\operatorname {Re}H^1$, а оператор Харди–Литлвуда $\mathscr B$ ограничен в пространстве $\text {\textrm {BMO}}$ функций ограниченной средней осцилляции на действительной оси $\mathbb R$. При этом пространство $\operatorname {Re}H^1$ изоморфно пространству Харди однозначных аналитических в верхней полуплоскости функций $F(z)$, удовлетворяющих условию \thetag {0.3}. Оператор Харди–Литлвуда $\mathscr B$ задается на $\mathbb R$ равенством \thetag {0.2}, а оператор Харди $\mathscr H$ задается на $\mathbb R_+$ равенством \thetag {0.1} и продолжается на $\mathbb R$ следующим образом. Если функция $f$ четна (нечетна), то $\mathscr Hf$ продолжается на $\mathbb R_-$ четным (нечетным) образом. Если же функция $f$ произвольна, то $\mathscr H(f)=\mathscr H(f_+)+\mathscr H(f_-)$, где $f_+$ – четная, а $f_-$ – нечетная составляющие функции $f$.
Библиография: 12 названий.

УДК: 517.518.2

MSC: 46E30, 47B38, 47G10

Поступила в редакцию: 21.05.1996

DOI: 10.4213/sm246


 Англоязычная версия: Sbornik: Mathematics, 1997, 188:7, 1041–1054

Реферативные базы данных:


© МИАН, 2024