Аннотация:
В работе рассматривается задача о корректности теоремы Шура для $n$-мерного риманова пространства $V_n$. Показано, что в общем случае корректности нет, т.е. может быть так, что при сколь угодно малом изменении кривизны пространства за счет поворотов двумерных площадок в точках данной области изменение кривизны при переходе от точки к точке области будет сколь угодно большим.
Библиография: 8 названий.