Эта публикация цитируется в
9 статьях
Обобщенные аналитические функции многих переменных
Г. А. Магомедов,
В. П. Паламодов
Аннотация:
В работе изучается система дифференциальных уравнений
$$
\frac{\partial u}{\partial\bar z_k}-\overline{a_ku}=f_k,\qquad k=1,2,\dots,n.
$$
в области пространства
$\mathbf C^n$. Указаны дифференциальные соотношения между коэффициентами
$a_k$, при которых однородная система (
$f_k=0$) имеет в каждой точке бесконечно много линейно независимых локальных решений. При этих условиях изучается глобальная разрешимость системы. Доказано, что эта задача, а также описание глобальных решений однородной системы сводятся к аналогичным вопросам для некоторой связности типа
$(0,1)$, действующей в линейном расслоении на римановой поверхности, естественным образом связанной с исходной системой. При помощи этого сведения в некоторых случаях удается установить конечность индекса оператора, отвечающего этой системе, и найти для него формулу.
Библиография: 11 названий.
УДК:
517.945.7+
517.551
MSC: 30G20,
32A30 Поступила в редакцию: 27.10.1977