Аннотация:
Построены волны, характеризующие поведение при больших значениях времени $t$ функций Грина основных внешних краевых задач для волнового уравнения с двумя пространственными переменными (за волновым фронтом). Получены представления функций Грина (и решений) в виде асимптотических по $t$ при $t\to\infty$ рядов. Обоснован принцип предельной амплитуды, т.е. установлено существование предела $\lim_{t\to\infty}u(t,x)e^{i\omega t}=v(x,\omega)$ для решений основных внешних краевых задач для волнового уравнения в случае вынуждающей периодической по времени силы ($u_{tt}=\Delta u-f(x)e^{-i\omega t}$) и получено представление разности
$u(t,x)-v(x,\omega)e^{-i\omega t}$ в виде асимптотического по $t$ при $t\to\infty$ ряда; показано, что скорость выхода решения $u(t,x)$ на периодический режим $v(x,\omega)e^{-i\omega t}$ не может быть больше степенной.
Библиография: 18 названий.