Аннотация:
С помощью метода рядов Фурье получен интегральный критерий вполне регулярного роста целой функции.
Показано, что при наличии угловой плотности пары $(Z,W)$ последовательностей нулей $Z$ и полюсов $W$ мероморфной функции $f$ она принадлежит классу $\Lambda^0$ мероморфных функций вполне регулярного роста, введенному в части I статьи, а также исследуются ее асимптотические свойства. Строится пример функции $f\in\Lambda^0$ такой, что пара $(Z,W)$ не имеет угловой плотности. Приведены примеры
$[\varkappa,\rho]$-тригонометрически выпуклых функций.
Библиография: 14 названий.