Аннотация:
В работе рассматриваются алгебраические функции $z$, удовлетворяющие уравнениям вида
\begin{equation}
\tag{1}
a_0 z^m+a_1z^{m_1}+a_2 z^{m_2}+\dots+a_nz^{m_n}+a_{n+1}=0.
\end{equation}
Здесь $m>m_1>\dots>m_n>0$, $m,m_i\in\mathbb N$, а $z=z(a_0,\dots,a_{n+1})$ – функция комплексных переменных $a_0,\dots,a_{n+1}$. Известно, что решения таких
алгебраических уравнений удовлетворяют голономным системам линейных дифференциальных уравнений в частных производных с полиномиальными коэффициентами. В настоящей работе изучается одна из таких систем дифференциальных уравнений, введенная Меллином. Мы вычисляем голономный ранг данной системы уравнений и размерность линейного пространства ее алгебраических решений.
Предъявлен явный базис в пространстве решений системы Меллина в терминах корней уравнения (1) и их логарифмов. Показано, что представление монодромии системы Меллина является приводимым, и получены результаты о факторизации оператора Меллина в одномерном случае.
Библиография: 18 названий.