Аннотация:
Изучаются некоторые общие свойства пространства $n$-мерных алгебр Ли $\mathscr L_n$. Это пространство задается системой квадратичных уравнений Якоби. Доказано, что эти уравнения линейно
независимы и между собой эквивалентны (точнее, аффинно эквивалентны задающие их квадратичные формы). Кроме того, рассматривается вопрос о замыканиях некоторых орбит естественного действия группы $\mathrm{GL}_n$ на $\mathscr L_n$. Указаны две алгебры Ли, орбиты которых замкнуты
в проективизации пространства $\mathscr L_n$. Рассматривается также пересечение всех неприводимых компонент пространства $\mathscr L_n$. Доказано, что оно нетривиально и состоит из нильпотентных
алгебр Ли. Указаны две алгебры Ли, принадлежащие этому пересечению. Приведен также ряд других результатов, касающихся произвольных алгебр Ли и образованного ими пространства $\mathscr L_n$.
Библиография: 17 названий.