Аннотация:
Исследуются задачи сходимости почти всюду римановых сумм
$$
R_nf(x)=\frac1n\sum_{k=0}^{n-1}f\biggl(x+\frac kn\biggr), \qquad x\in\mathbb T,
$$
с помощью техники классических максимальных функций в $\mathbb R^n$. Доказана теорема об эквивалентности римановых и обычных максимальных функций, позволяющая использовать технику и результаты теории дифференцирования интегралов в $\mathbb R^n$ при исследовании указанных выше задач. При помощи этого метода установлено, что для определенной последовательности $\{n_k\}$ римановы суммы $R_{n_k}f(x)$ сходятся почти всюду к $f\in L^p$, $p>1$.
Библиография: 23 названия.