Аннотация:
Работа посвящена проблемам, возникающим при приложении гомологической алгебры к компьютерным наукам. Доказано, что размерность Лича свободного частично коммутативного моноида равна верхней грани мощностей конечных подмножеств его попарно перестановочных образующих. Для произвольного свободного частично коммутативного моноида $M(E,I)$, у которого каждое подмножество попарно перестановочных образующих конечно, и для любой контравариантной натуральной системы $F$ на $M(E,I)$ построено такое полукубическое множество $T(E,I)$ с гомологической системой $\overline F$ на нем, что группы гомологий Лича $H_n(M(E,I),F)$ изоморфны кубическим группам гомологий $H_n(T(E,I),\overline F)$. Построены также комплексы абелевых групп, позволяющие при дополнительных
условиях конечности получить алгоритмы вычисления групп гомологий Лича и гомологий c коэффициентами в правых $M(E,I)$-модулях.
Библиография: 16 названий.