Эта публикация цитируется в
93 статьях
Четность в теории узлов
В. О. Мантуров Российский университет дружбы народов, г. Москва
Аннотация:
В работе исследуются теории узлов, обладающие свойством четности перекрестков: каждый перекресток объявляется четным или нечетным согласно некоторому наперед заданному правилу. Если это правило удовлетворяет набору простых аксиом, связанных с движениями Рейдемейстера, это приводит к возможности построения простых инвариантов, решающих проблему минимальности, а также инвариантных отображений на множестве узлов.
Самым главным примером теории узлов с четностью является теория виртуальных узлов. С использованием четности, происходящей из гауссовых диаграмм, мы показываем, что даже резкое упрощение теории виртуальных узлов – теория свободных узлов – допускает простые и глубоко нетривиальные инварианты, что является решением проблемы Тураева, предположившего, что все свободные узлы тривиальны.
В работе доказывается, что свободные узлы, вообще говоря, не обратимы, и приводятся инварианты, распознающие обратимость свободных узлов.
Переход к обычным виртуальным узлам позволяет усиливать известные инварианты (такие, как скобка Кауфмана) посредством соображений, связанных с четностью.
Обсуждаются другие примеры теорий узлов с четностью.
Библиография: 27 названий.
Ключевые слова:
узел, зацепление, граф, атом, виртуальный узел, четность, скобка Кауфмана, минимальность.
УДК:
515.162+
519.1
MSC: 57M25,
57M27 Поступила в редакцию: 07.05.2009 и 21.01.2010
DOI:
10.4213/sm7574