RUS  ENG
Полная версия
ЖУРНАЛЫ // Математический сборник // Архив

Матем. сб., 2003, том 194, номер 9, страницы 3–30 (Mi sm765)

Эта публикация цитируется в 19 статьях

Аппроксимация траекторий, лежащих на глобальном аттракторе гиперболического уравнения с быстро осциллирующей по времени внешней силой

М. И. Вишик, В. В. Чепыжов

Институт проблем передачи информации РАН

Аннотация: Рассматривается квазилинейное диссипативное волновое уравнение при периодических граничных условиях с внешней силой $g(x,t/\varepsilon)$, быстро осциллирующей по $t$. Кроме того, предполагается, что при $\varepsilon\to0+$ функция $g(x,t/\varepsilon)$ в слабом смысле (в $L_{2,w}^{\mathrm{loc}}(\mathbb R,L_2(\mathbb T^n))$) стремится к функции $\overline g(x)$, а усредненное волновое уравнение (с внешней силой $\overline g(x)$) имеет лишь конечное число стационарных точек $\{z_i(x),\,i= 1,\dots,N\}$, каждая из которых является гиперболической. Доказано, что глобальный аттрактор $\mathscr A_\varepsilon$ исходного уравнения отклоняется в энергетической норме от глобального аттрактора $\mathscr A_0$ усредненного уравнения на величину $C\varepsilon^\rho$, причем для $\rho$ дается явная формула. Кроме того, доказано, что любой кусок траектории $u^\varepsilon(t)$ исходного уравнения, лежащей на $\mathscr A_\varepsilon$ и временной длины $C\log(1/\varepsilon)$, допускает аппроксимацию порядка $C_1\varepsilon^{\rho_1}$ с помощью конечного числа кусков траекторий, лежащих на неустойчивых многообразиях $M^u(z_i)$ усредненного уравнения. Для $\rho_1$ дается явное выражение.
Библиография: 14 названий.

УДК: 517.9

MSC: Primary 35B41, 34C29; Secondary 35L70

Поступила в редакцию: 21.03.2003

DOI: 10.4213/sm765


 Англоязычная версия: Sbornik: Mathematics, 2003, 194:9, 1273–1300

Реферативные базы данных:


© МИАН, 2024