Аннотация:
В работе представлен новый подход к изучению показателей Ляпунова случайных матриц. Доказано, что любое семейство неотрицательных $(d\times d)$-матриц имеет непрерывный вогнутый инвариантный
функционал на ${\mathbb R}^d_+$. При некоторых стандартных ограничениях на матрицы данный функционал строго положителен, а соответствующий ему коэффициент равен максимальному показателю
Ляпунова. В качестве следствия получена асимптотика математического ожидания логарифма норм матричных произведений, а также их спектральных радиусов. Другое следствие – новые двусторонние оценки на показатель Ляпунова и алгоритм его вычисления для семейств неотрицательных матриц. Рассмотрены возможные обобщения полученных результатов на более общие семейства матриц, а также ряд приложений и примеров.
Библиография: 29 названий.