Аннотация:
В работе доказано, что для произвольной подгруппы $R\subseteq\mathbb Z/p\mathbb Z$ и любых различных ненулевых элементов $\mu_1,\dots,\mu_k$ имеем
$$\bigl|R\cap(R+\mu_1)\cap\dots\cap(R+\mu_k)\bigr| \ll_k|R|^{{1}/{2}+\alpha_k}$$ при условии, что $1\ll_k|R|\ll_kp^{1-\beta_k}$, где $\{\alpha_k\}$, $\{\beta_k\}$ – некоторые последовательности положительных чисел и $\alpha_k,\beta_k\to 0$, $k\to\infty$. Кроме того, показано, что для
любой подгруппы $R$, $|R|\ll p^{1/2}$, справедливо неравенство $|R\pm R|\gg|R|^{5/3}\log^{-1/2}|R|$.
Библиография: 25 названий.
Ключевые слова:мультипликативные подгруппы, метод Степанова, аддитивная комбинаторика.