Аннотация:
В настоящей работе вводятся в рассмотрение некоторые специальные классы релаксационных систем с одной медленной и одной быстрой переменными. При этом эволюция во времени медленной компоненты $x(t)$ описывается обыкновенным дифференциальным уравнением, а быстрой компоненты $y(t)$ – дифференциальным уравнением вольтерровского типа с запаздыванием $y(t-h)$, $h=\mathrm{const}>0$,
и малым параметром $\varepsilon>0$ при производной по времени. Исследуются вопросы о существовании и устойчивости в указанных системах периодических решений импульсного типа, т.е. решений,
у которых координата $x$ при $\varepsilon\to 0$ сходится поточечно к некоторой разрывной функции, а координата $y$ является $\delta$-образной. Полученные результаты иллюстрируются на ряде примеров из экологии и теории лазеров.
Библиография: 11 названий.
Ключевые слова:неклассические релаксационные колебания, сингулярно возмущенные системы с запаздыванием, асимптотика, устойчивость.