Аннотация:
Рассматривается задача о качении сферы по плоскости с прокручиванием, без проскальзывания. Требуется перекатить сферу из одной конфигурации в другую так, чтобы достигался минимум действия. Получена полная параметризация экстремальных траекторий и исследуются естественные симметрии гамильтоновой системы принципа максимума Понтрягина (вращения и отражения) и их неподвижные точки. На основе полученных
оценок для неподвижных точек доказаны верхние оценки времени разреза, т.е. момента времени, когда экстремальная траектория теряет оптимальность. Более детально рассмотрена задача о переориентации сферы, в частности, найдены диффеоморфные области в прообразе и образе экспоненциального отображения, которые используются для построения оптимального синтеза.
Библиография: 15 названий.