Аннотация:
Для достаточно больших $n$ доказано, что минимальная мера подмножества $[-\pi,\pi]$, на котором некоторый ненулевой тригонометрический полином порядка не выше $n$ набирает половину $L_1$-нормы, равна $\pi/(n+1)$. Получен аналогичный результат для целых функций экспоненциального типа.
Библиография: 13 названий.