Аннотация:
Рассматривается начально-краевая задача для системы уравнений детерминированной игры среднего поля. Система состоит из уравнения типа Гамильтона–Якоби для функции цены и кинетического уравнения для распределения положений игроков. Предлагается определение обобщенного решения системы, основанное на понятии минимаксного решения уравнения типа Гамильтона–Якоби. Предложенный в работе метод доказательства существования обобщенного решения системы основан на исследовании равновесия по Нэшу в игре бесконечного числа игроков. С использованием обобщенного решения системы уравнений для игры среднего поля построено $\varepsilon$-равновесие по Нэшу в игре конечного числа игроков.
Библиография: 34 названия.
Ключевые слова:игры среднего поля, уравнение типа Гамильтона–Якоби, минимаксное решение, равновесие по Нэшу, игра бесконечного числа игроков.