Аннотация:
В статье продолжается исследование алгебро-геометрических свойств коммутативных подалгебр дифференциальных операторов в частных производных. В частности, начато изучение наиболее простых,
а также некоторых известных примеров квантовых алгебраически вполне интегрируемых систем с точки зрения недавнего обобщения теории Сато, принадлежащего первому автору. Дано полное описание спектральных данных для класса “тривиальных” коммутативных алгебр и усовершенствованы геометрические свойства, полученные ранее для класса известных примеров коммутативных алгебр. Определено некоторое отображение ограничения из пространства модулей когерентных пучков на поверхности с фиксированным полиномом Гильберта в аналогичное пространство модулей на дивизоре (и поверхность, и дивизор – компоненты
спектральных данных). Построено несколько явных примеров спектральных данных и соответствующих им алгебр коммутирующих (пополненных) операторов, получены интересные примеры поверхностей, не изоморфных никаким спектральным поверхностям (максимальных) коммутативных колец дифференциальных операторов в частных производных ранга 1. Наконец, доказано, что всякое коммутативное кольцо дифференциальных операторов в частных производных, нормализация которого изоморфна кольцу полиномов $k[u,t]$, получается с помощью преобразования Дарбу из кольца дифференциальных операторов с постоянными коэффициентами.
Библиография: 39 названий.
Ключевые слова:коммутирующие дифференциальные операторы, квантовые интегрируемые системы, пространства модулей когерентных пучков, преобразование Дарбу.