Аннотация:
Доказана теорема о структуре изломов обобщенных геодезических на кусочно гладких поверхностях в двумерном и $n$-мерном случаях. В качестве примеров найдены все простые замкнутые геодезические: на цилиндре (с основаниями); на поверхности, образованной объединением двух сферических шапочек; на
поверхности, образованной объединением двух конусов. В последнем случае исследованы на устойчивость замкнутые геодезические (в естественном конечномерном классе возмущений) и найдены сопряженные точки и индексы геодезических. Эта задача связана с сопряженными точками на кусочно гладких биллиардах и поверхностях вращения.
Библиография: 40 названий.