Аннотация:
Исследуются конечные $n$-квазигруппы $(n\geqslant3)$ со следующим свойством дополнительной обратимости. Если на каких-то двух наборах из $n$ аргументов с одинаковыми первыми компонентами
квазигрупповая операция дает одинаковые результаты, то наборы из остальных $n-1$ компонент осуществляют одинаковые левые сдвиги. Для таких $n$-квазигрупп доказывается аналог теоремы Поста–Глускина–Хоссу, которая ранее доказывалась только в ассоциативном случае. Теорема сводит операцию $n$-квазигруппы к групповой. Основным средством для доказательства выступает вводимое и исследуемое в работе двупараметрическое самоинвариантное семейство подстановок на произвольном конечном множестве.
Библиография: 13 названий.