Аннотация:
Доказана $L^2$-оценка усреднения для эллиптического оператора $A_\varepsilon$ в области $\Omega$ с краевым условием Неймана на границе $\partial\Omega$. Коэффициенты оператора $A_\varepsilon$ быстро осциллируют по разным группам переменных с периодами разных порядков малости при $\varepsilon\to 0$. Предполагается минимальная регулярность данных, что позволяет придать результату смысл оценки в операторной $(L^2(\Omega)\to L^2(\Omega))$-норме для разности резольвент исходной и усредненной задач. Найдена также аппроксимация резольвенты исходной задачи в операторной $(L^2(\Omega)\to H^1(\Omega))$-норме.
Библиография: 24 названия.
Ключевые слова:многомасштабное усреднение, операторные оценки усреднения, сглаживание по Стеклову.