Аннотация:
Доказывается, что все трехмерные $G$-многообразия дель Пеццо степени 4 за исключением однопараметрического семейства и четырех выделенных случаев эквивариантно перестраиваются в проективное пространство $\mathbb P^3$, квадрику $Q\subset\mathbb P^4$, $G$-расслоение на коники
или поверхности дель Пеццо. Также мы покажем, что одно из четырех выделенных многообразий является бирационально жестким относительно подгруппы в группе автоморфизмов индекса 2.
Библиография: 15 названий.
Ключевые слова:многообразия дель Пеццо, группы автоморфизмов, бирациональная жесткость.