Аннотация:
Пусть $\widehat\sigma$ – преобразование Коши комплекснозначной борелевской меры $\sigma$ и $\{p_n\}$ – система ортонормированных по мере $\mu$, $\operatorname{supp}(\mu)\cap\operatorname{supp}(\sigma)=\varnothing$, многочленов. Аппроксимацией Фробениуса–Паде с индексом $(m,n)$ функции $\widehat\sigma$ называют рациональную функцию $P/Q$, $\deg(P)\leq m$, $\deg(Q)\leq n$, такую, что первые $m+n+1$ коэффициентов разложения Фурье по многочленам $p_n$ функции остатка $Q\widehat\sigma-P$ обращаются в нуль. Мы исследуем сходимость аппроксимаций Фробениуса–Паде к $\widehat\sigma$ вдоль лучевых последовательностей $n/(n+m+1)\to c>0$, $n-1\leq m$. Носители мер $\mu$ и $\sigma$ принадлежат отрезкам действительной оси, а соответствующие этим мерам тригонометрические веса являются голоморфными, не обращающимися в нуль на отрезках, функциями.
Библиография: 30 названий.
Ключевые слова:аппроксимации Фробениуса–Паде, линейные аппроксимации Паде–Чебышёва, аппроксимации Паде ортогональных разложений, ортогональность, функции марковского типа, матричная задача Римана–Гильберта.