Аннотация:
Исследуется течение Стокса в сочленении тонких (диаметром $O(h)$) каналов при задании на впускающих сечениях потоков жидкости, а на выпускающих – периферийного давления. На основе понятия матрицы скачков давления обычные одномерные уравнения Рейнольдса на звеньях графа помимо условий Неймана (фиксируется поток) и условий Дирихле (фиксируется давление) во внешних вершинах снабжаются условиями сопряжения во внутренних вершинах, содержащими малый параметр $h$ и переходящими при $h\to+0$ в классические условия Кирхгофа. Установлено, что допредельные условия сопряжения обеспечивают экспоненциально малую $O(e^{-\rho/h})$, $\rho>0$, погрешность в вычислении трехмерного решения, но классические условия Кирхгофа – только степенную малость погрешности. Для артериального дерева в предположении жесткости стенок кровеносных сосудов в каждом бифуркационном узле возникает ($2\times2$)-матрица перепадов давления, а ее влияние на условия сопряжения учитываются путем малых вариаций длин графа и введения эффективных длин одномерных изображений сосудов при сохранении условий Кирхгофа и экспоненциально малых погрешностей приближения. Обсуждаются конкретные формы ветвления артерий и доступные обобщения результатов, в частности, система уравнений Навье–Стокса.
Библиография: 59 названий.
Ключевые слова:сочленение тонких каналов, бифуркация кровеносного сосуда, уравнение Рейнольдса, модифицированные условия Кирхгофа, матрицы скачков и перепадов давления, эффективная длина одномерного изображения сосуда.