RUS  ENG
Полная версия
ЖУРНАЛЫ // Математический сборник // Архив

Матем. сб., 2017, том 208, номер 8, страницы 56–105 (Mi sm8748)

Эта публикация цитируется в 12 статьях

Одномерная модель течения в сочленении тонких каналов в том числе артериальных деревьев

В. А. Козловa, С. А. Назаровbcd

a Department of Mathematics, Linköpings Universitet, Sweden
b Математико-механический факультет, Санкт-Петербургский государственный университет
c Санкт-Петербургский политехнический университет Петра Великого
d Институт проблем машиноведения Российской академии наук, г. Санкт-Петербург

Аннотация: Исследуется течение Стокса в сочленении тонких (диаметром $O(h)$) каналов при задании на впускающих сечениях потоков жидкости, а на выпускающих – периферийного давления. На основе понятия матрицы скачков давления обычные одномерные уравнения Рейнольдса на звеньях графа помимо условий Неймана (фиксируется поток) и условий Дирихле (фиксируется давление) во внешних вершинах снабжаются условиями сопряжения во внутренних вершинах, содержащими малый параметр $h$ и переходящими при $h\to+0$ в классические условия Кирхгофа. Установлено, что допредельные условия сопряжения обеспечивают экспоненциально малую $O(e^{-\rho/h})$, $\rho>0$, погрешность в вычислении трехмерного решения, но классические условия Кирхгофа – только степенную малость погрешности. Для артериального дерева в предположении жесткости стенок кровеносных сосудов в каждом бифуркационном узле возникает ($2\times2$)-матрица перепадов давления, а ее влияние на условия сопряжения учитываются путем малых вариаций длин графа и введения эффективных длин одномерных изображений сосудов при сохранении условий Кирхгофа и экспоненциально малых погрешностей приближения. Обсуждаются конкретные формы ветвления артерий и доступные обобщения результатов, в частности, система уравнений Навье–Стокса.
Библиография: 59 названий.

Ключевые слова: сочленение тонких каналов, бифуркация кровеносного сосуда, уравнение Рейнольдса, модифицированные условия Кирхгофа, матрицы скачков и перепадов давления, эффективная длина одномерного изображения сосуда.

УДК: 517.958+539.3(5)+531.3-324

MSC: Primary 76D07; Secondary 76D05, 76Z05, 92C35

Поступила в редакцию: 30.05.2016 и 30.11.2016

DOI: 10.4213/sm8748


 Англоязычная версия: Sbornik: Mathematics, 2017, 208:8, 1138–1186

Реферативные базы данных:


© МИАН, 2024