Аннотация:
Описана квазиклассическая асимптотика спектра одномерного оператора Шредингера с комплексным периодическим потенциалом, возникающим в статистической механике кулоновского газа. Доказано, что спектр концентрируется вблизи дерева на комплексной плоскости, причем вершины дерева вычисляются явно, а расположение ребер может быть детально изучено. Получены уравнения, из которых находятся асимптотические собственные значения; они представляют собой условия целочисленности некоторых специальных периодов голоморфной формы на римановой поверхности постоянной классической энергии.
Ключевые слова:
квазиклассическая асимптотика, несамосопряженные операторы, спектральный граф, линии Стокса.