Аннотация:
Изучение динамики потока на поверхностях путем разбиения фазового пространства на ячейки с одним и тем же предельным поведением траекторий внутри ячейки восходит к классическим работам А. А. Андронова, Л. С. Понтрягина, Е. А. Леонтович и А. Г. Майера. Типы ячеек (число которых конечно) и их примыкание друг к другу полностью определяют класс топологической эквивалентности потока с конечным числом особых траекторий. Если в каждой ячейке грубого потока без периодических орбит выбрать по одной траектории, то ячейки распадаются на так называемые треугольные области одного и того же типа. Комбинаторное описание такого разбиения приводит к трехцветному графу Ошемкова–Шарко, вершины которого соответствуют треугольным областям, а ребра – связывающим их сепаратрисам. А. А. Ошемков и В. В. Шарко доказали, что два таких потока топологически эквивалентны тогда и только тогда, когда трехцветные графы потоков изоморфны и описан алгоритм различения трехцветных графов. Однако построенный алгоритм не является эффективным относительно теории графов. В настоящей работе динамика $\Omega$-устойчивых потоков без периодических траекторий на поверхностях описана на языке четырехцветных графов, приведен эффективный алгоритм различения таких графов и разработана реализация потока по некоторому абстрактному графу.
Библиография: 17 названий.