Аннотация:
Выдвигается гипотеза, что асимптотика многочленов Чебышёва в области на комплексной плоскости может быть найдена в терминах воспроизводящих ядер подходящего гильбертова пространства аналитических функций в этой области. Гипотеза основана на двух классических результатах П. Р. Гарабедяна и Г. Видома. Для подтверждения этой гипотезы изучается асимптотика экстремальных многочленов задачи Альфорса на дополнении к системе интервалов вещественной прямой $\mathbb R$ и к системе дуг единичной окружности $\mathbb T$, а также асимптотика экстремальных целых функций для континуального аналога этой задачи.
Библиография: 35 названий.
Ключевые слова:многочлен Чебышёва, аналитическая емкость, гиперэллиптическая риманова поверхность, задача обращения Абеля–Якоби, комплексные функции Грина и Мартина, воспроизводящее ядро.