Аннотация:
Пусть $X$ – минимальная кубическая поверхность над конечным полем $\mathbb{F}_q$. Образ $\Gamma$ группы Галуа $\operatorname{Gal}(\overline{\mathbb{F}}_q / \mathbb{F}_q)$ в группе автоморфизмов $\operatorname{Aut}(\operatorname{Pic}(\overline{X}))$ является циклической подгруппой группы Вейля $W(E_6)$. В этой группе $25$ классов сопряженности циклических подгрупп, и пять из них соответствуют минимальным кубическим поверхностям. Возникает естественный вопрос: какие классы сопряженности достигаются для минимальных кубических поверхностей над заданным конечным полем? В статье мы даем частичный ответ на этот вопрос и строим много явных примеров таких кубических поверхностей.
Библиография: 11 названий.
Ключевые слова:конечное поле, кубическая поверхность, дзета-функция, поверхность дель Пеццо.