Аннотация:
Одним из основных подходов к изучению субримановых задач является теорема о нильпотентной аппроксимации Митчелла, которая сводит изучение окрестности регулярной точки к изучению левоинвариантной субримановой задачи на соответствующей группе Карно. Обычно детальное исследование субримановых кратчайших базируется на явном интегрировании гамильтоновой системы принципа максимума Понтрягина. Мы приводим явные формулы для субримановых геодезических на одной группе Карно с вектором роста $(2,3,5,6)$ и доказываем неинтегрируемость по Лиувиллю левоинвариантных субримановых задач на свободных группах Карно глубины 4 и больше.
Библиография: 30 названий.
Ключевые слова:субриманова геометрия, интегрируемость по Лиувиллю, группы Карно, вектор роста, расщепление сепаратрис, метод Мельникова–Пуанкаре.