Аннотация:
Рассматриваются дискретная динамическая система, порожденная гомеоморфизмом $f$ на компактном многообразии $M$, и непрерывная функция $\varphi$. Усреднение функции $\varphi$ над периодической $\varepsilon$-траекторией – это среднее арифметическое значений $\varphi$ на периоде. Предельное множество усреднений над периодическими $\varepsilon$-траекториями при $\varepsilon \to 0$ называется спектром усреднения. Показано, что спектр состоит из отрезков, каждый отрезок порожден компонентой цепно-рекуррентного множества и может быть получен как усреднение функции $\varphi$ по всем инвариантным мерам, сосредоточенным на данной компоненте.
Библиография: 18 названий.