RUS  ENG
Полная версия
ЖУРНАЛЫ // Математический сборник // Архив

Матем. сб., 2019, том 210, номер 4, страницы 103–127 (Mi sm9068)

Эта публикация цитируется в 4 статьях

Линейная совместная коллокационная аппроксимация для параметрических и стохастических эллиптических дифференциальных уравнений с частными производными

Динь Зунг

Information Technology Institute, Vietnam National University, Hanoi, Vietnam

Аннотация: Рассмотрим параметрическую эллиптическую задачу
$$ - \operatorname{div}\bigl(a(y)(x)\nabla u(y)(x)\bigr)=f(x),\qquad x \in D, \quad y \in {\mathbb I}^\infty, \quad u|_{\partial D}=0, $$
где $D \subset \mathbb R^m$ – ограниченная липшицева область, ${\mathbb I}^\infty:=[-1,1]^\infty$, $f \in L_2(D)$ и коэффициенты диффузии $a$ удовлетворяют условию равномерной эллиптичности и аффинно зависят от $y$. Параметр $y$ может быть детерминированной или случайной величиной. Основная задача, изучением которой мы будем заниматься в настоящей работе, состоит в следующем. Предположим, что имеется последовательность аппроксимаций с некоторой скоростью сходимости погрешности в энергетической норме пространства $V:=H^1_0(D)$ для непараметрической задачи $- \operatorname{div} \bigl(a(y_0)(x)\nabla u(y_0)(x)\bigr)=f(x)$ в каждой точке $y_0 \in {\mathbb I}^\infty$. При каких условиях эта последовательность будет индуцировать последовательность аппроксимаций с той же скоростью сходимости погрешности для параметрической эллиптической задачи в норме пространств Бохнера $L_\infty({\mathbb I}^\infty,V)$? Мы решили эту задачу линейными совместными коллокационными методами на основе интерполяции многочленами Лагранжа в области параметра ${\mathbb I}^\infty$. Мы покажем, что при очень слабых условиях эти методы аппроксимации дают ту же скорость сходимости погрешности, что и для непараметрической эллиптической задачи. В этом смысле линейные методы нивелируют проклятие размерности.
Библиография: 22 названия.

Ключевые слова: задачи высокой размерности, параметрические и стохастические эллиптические дифференциальные уравнения с частными производными, линейная совместная коллокационная аппроксимация, аффинная зависимость коэффициентов диффузии.

УДК: 517.954+517.518

MSC: 41A10, 65N35, 65N30, 65N15, 65L10, 65D05, 65C30

Поступила в редакцию: 19.01.2018 и 27.05.2018

DOI: 10.4213/sm9068


 Англоязычная версия: Sbornik: Mathematics, 2019, 210:4, 565–588

Реферативные базы данных:


© МИАН, 2024