RUS  ENG
Полная версия
ЖУРНАЛЫ // Математический сборник // Архив

Матем. сб., 2019, том 210, номер 7, страницы 3–20 (Mi sm9128)

Эта публикация цитируется в 3 статьях

Метрика Плиша и липшицева устойчивость задач минимизации

М. В. Балашов

Институт проблем управления им. В. А. Трапезникова Российской академии наук, г. Москва

Аннотация: Рассмотрена метрика, введенная А. Плишем на множестве выпуклых замкнутых ограниченных подмножеств из банахова пространства. В случае вещественного гильбертова пространства показано, что метрическая проекция и (при определенных условиях) метрическая антипроекция удовлетворяют условию Липшица в рассматриваемой метрике по множеству. Доказано, что решение широкого класса задач минимизации также липшицево устойчиво по множеству в данной метрике. Рассмотрены некоторые примеры.
Библиография: 18 названий.

Ключевые слова: метрика Плиша, метрика Хаусдорфа, опорная функция, сильная выпуклость, непрерывный по Липшицу градиент.

УДК: 517.98

MSC: Primary 49J53, 52A20; Secondary 90C26

Поступила в редакцию: 23.04.2018

DOI: 10.4213/sm9128


 Англоязычная версия: Sbornik: Mathematics, 2019, 210:7, 911–927

Реферативные базы данных:


© МИАН, 2024