Аннотация:
Настоящая работа посвящена эффективным действиям компактного тора $T^{n-1}$ на гладких компактных многообразиях $M^{2n}$ четной размерности с изолированными неподвижными точками. В работе доказано, что при определенных условиях на весовые векторы касательного представления пространство орбит такого действия является многообразием с углами. В случае гамильтоновых действий пространство орбит гомотопически эквивалентно $S^{n+1} \setminus (U_1 \sqcup \dots \sqcup U_l)$ – дополнению до объединения непересекающихся открытых областей в (n+1)-сфере. Полученные результаты применены к регулярным многообразиям Хессенберга и многообразиям изоспектральных эрмитовых матриц ступенчатого типа.
Библиография: 23 наименования.
Ключевые слова:действия тора, пространства орбит, сложность действия, многообразия Хессенберга.