RUS  ENG
Полная версия
ЖУРНАЛЫ // Математический сборник // Архив

Матем. сб., 2021, том 212, номер 2, страницы 3–37 (Mi sm9322)

Эта публикация цитируется в 2 статьях

Фильтрация ветвления и деформации

В. А. Абрашкинab

a Department of Mathematical Sciences, Durham University, Durham, UK
b Математический институт им. В. А. Стеклова Российской академии наук, г. Москва

Аннотация: Пусть $\mathscr K$ – поле формальных рядов Лорана с коэффициентами в конечном поле характеристики $p$, $\mathscr G_{<p}$ – максимальный фактор группы Галуа поля $\mathscr K$ периода $p$ и класса нильпотентности $<p$ и $\{\mathscr G_{<p}^{(v)}\}_{v\geqslant 1}$ – фильтрация подгрупп ветвления в верхней нумерации. Пусть $\mathscr G_{<p}=G(\mathscr L)$ – отождествление нильпотентной теории Артина–Шрайера: здесь $G(\mathscr L)$ – группа, полученная из проконечной $\mathbb{F}_p$-алгебры Ли $\mathscr L$ с помощью группового закона Кемпбелла–Хаусдорфа. В работе изложен новый подход к описанию идеалов $\mathscr L^{(v)}$ таких, что $G(\mathscr L^{(v)})=\mathscr G_{<p}^{(v)}$, и построению их явных образующих. Для заданного $v_0\geqslant 1$ строится эпиморфизм алгебр Ли $\overline\eta^{\dagger }\colon \mathscr L\to \overline{\mathscr L}^{\dagger }$ и действие $\Omega_U$ формальной группы порядка $p$, $\alpha_p=\operatorname{Spec}\mathbb{F}_p[U]$, $U^p=0$, на $\overline{\mathscr L}^{\dagger }$. Пусть $d\Omega_U=B^{\dagger }U$, где $B^{\dagger }\in\operatorname{Diff}\overline{\mathscr L}^{\dagger }$, и $\overline{\mathscr L}^{\dagger }[v_0]$ – идеал в $\overline{\mathscr L}^{\dagger }$, порожденный элементами $B^{\dagger }(\overline{\mathscr L}^{\dagger })$. Основной результат работы утверждает, что $\mathscr L^{(v_0)}=(\overline\eta^{\dagger })^{-1}\overline{\mathscr L}^{\dagger }[v_0]$. В заключительных параграфах этот результат связывается с явным описанием образующих идеала $\mathscr L^{(v_0)}$, полученным ранее автором, и формулируется его более эффективная версия, позволяющая восстанавливать всю фильтрацию ветвления группы $\mathscr G_{<p}$ по множеству ее скачков.
Библиография: 13 названий.

Ключевые слова: локальное поле, подгруппы ветвления.

УДК: 512.625

MSC: 11S15, 11S20

Поступила в редакцию: 26.08.2019 и 12.10.2020

DOI: 10.4213/sm9322


 Англоязычная версия: Sbornik: Mathematics, 2021, 212:2, 135–169

Реферативные базы данных:


© МИАН, 2024