RUS  ENG
Полная версия
ЖУРНАЛЫ // Математический сборник // Архив

Матем. сб., 2021, том 212, номер 1, страницы 28–62 (Mi sm9343)

Эта публикация цитируется в 3 статьях

Проблема Ферма–Штейнера в пространстве компактных подмножеств $\mathbb R^m$ с метрикой Хаусдорфа

А. Х. Галстянab, А. О. Ивановabc, А. А. Тужилинab

a Механико-математический факультет, Московский государственный университет имени М. В. Ломоносова
b Московский центр фундаментальной и прикладной математики
c Московский государственный технический университет имени Н. Э. Баумана (национальный исследовательский университет)

Аннотация: Проблема Ферма–Штейнера состоит в поиске всех точек метрического пространства $X$, в которых достигает минимума сумма расстояний до фиксированных точек $A_1,\dots,A_n$ из $X$. Эта задача изучается в метрическом пространстве $\mathscr{H}(\mathbb R^m)$ всех непустых компактных подмножеств евклидова пространства, где $A_i$ – его попарно не пересекающиеся конечные подмножества. Множество решений (так называемых компактов Штейнера) разбивается на классы, различающиеся наборами расстояний до точек $A_i$. В каждом классе существуют наибольший и минимальные по включению элементы (соответственно максимальный и минимальные компакты Штейнера). В работе получен критерий того, когда компакт является минимальным компактом Штейнера в заданном классе, приведен алгоритм построения таких компактов, получена точная оценка на число точек в них. Также доказан ряд геометрических свойств минимальных и максимальных компактов. Результаты данного исследования могут существенно облегчить решение конкретных задач, что продемонстрировано на известном примере симметричного множества $\{A_1,A_2,A_3\}\subset \mathbb R^2$, для которого все компакты Штейнера несимметричны. Разбор этого случая удалось значительно упростить благодаря развитой в работе технике.
Библиография: 16 названий.

Ключевые слова: минимальные сети, расстояние Хаусдорфа, проблема Ферма–Штейнера, проблема Штейнера, метрическая геометрия.

УДК: 515.124.4+519.176

MSC: Primary 49Q10, 49Q22; Secondary 51F99

Поступила в редакцию: 02.11.2019

DOI: 10.4213/sm9343


 Англоязычная версия: Sbornik: Mathematics, 2021, 212:1, 25–56

Реферативные базы данных:


© МИАН, 2024