Аннотация:
Исследуются максимальные подалгебры Ли среди локально нильпотентных дифференцирований алгебры многочленов. Дж. Фройденбургом была высказана гипотеза о том, что треугольная алгебра Ли локально нильпотентных дифференцирований алгебры многочленов является максимальной алгеброй Ли, содержащейся в множестве локально нильпотентных дифференцирований, и гипотеза о том, что каждая максимальная алгебра Ли, содержащаяся в множестве локально нильпотентных дифференцирований, сопряжена треугольной алгебре Ли. В настоящей работе мы доказываем справедливость первой части гипотезы и приводим контрпример ко второй ее части. Также мы покажем, что при некотором естественном условии, наложенном на максимальную алгебру Ли, существует сопряжение, переводящее эту алгебру Ли в треугольную алгебру Ли.
Библиография: 2 названия.