RUS  ENG
Полная версия
ЖУРНАЛЫ // Математический сборник // Архив

Матем. сб., 2021, том 212, номер 1, страницы 3–27 (Mi sm9402)

Эта публикация цитируется в 4 статьях

Критические процессы Гальтона–Ватсона со счетным множеством типов частиц и бесконечными вторыми моментами

В. А. Ватутинa, Е. Е. Дьяконоваa, В. А. Топчийbc

a Математический институт им. В. А. Стеклова Российской академии наук, г. Москва
b Математический центр в Академгородке, г. Новосибирск
c Омский филиал Института математики им. С. Л. Соболева Сибирского отделения Российской академии наук

Аннотация: Рассматривается неразложимый ветвящийся процесс Гальтона–Ватсона со счетным множеством типов частиц. Предполагая, что процесс является критическим, а частицы некоторых (или всех) его типов могут иметь бесконечную дисперсию числа непосредственных потомков, мы описываем асимптотическое поведение вероятности невырождения процесса и доказываем условную предельную теорему ягломовского типа о распределении бесконечномерного вектора числа частиц всех типов.
Библиография: 20 названий.

Ключевые слова: критический процесс Гальтона–Ватсона со счетным множеством типов частиц, вероятность невырождения, бесконечные вторые моменты для численности потомства, правильно меняющиеся функции, предельная теорема ягломовского типа.

УДК: 519.218.23+519.217.2

MSC: Primary 60J80; Secondary 60B12, 60J10

Поступила в редакцию: 02.03.2020 и 29.05.2020

DOI: 10.4213/sm9402


 Англоязычная версия: Sbornik: Mathematics, 2021, 212:1, 1–24

Реферативные базы данных:


© МИАН, 2024