Аннотация:
Геодезические линии римановой метрики на поверхности описываются гамильтоновой системой с двумя степенями свободы, функция Гамильтона которой квадратична по импульсам. Ввиду однородности каждый интеграл задачи о геодезических является функцией от полиномиальных по импульсам интегралов. Геодезический поток на поверхности рода больше единицы вообще не допускает дополнительного непостоянного интеграла, с другой стороны, есть многочисленные примеры метрик на торе, геодезические потоки которых вполне интегрируемы: имеются независимые от гамильтониана полиномиальные интегралы степени $\leqslant2$. По-видимому, степень дополнительного “неприводимого” полиномиального интеграла
геодезического потока на торе вообще не может превосходить двух.
В настоящей работе эта гипотеза доказана для метрик, которыми можно как угодно точно аппроксимировать любую метрику на двумерном торе.
Библиография: 12 названий.