Аннотация:
На бесконечномерном торе $\mathbb{T}^{\infty}\,{=}\,E/2\pi\mathbb{Z}^{\infty}$,
где $E$ – бесконечномерное вещественное банахово пространство, $\mathbb{Z}^{\infty}$ – абстрактная целочисленная решетка, рассматривается специальный класс диффеоморфизмов $\operatorname{Diff}(\mathbb{T}^{\infty})$. Упомянутый класс состоит из отображений $G\colon \mathbb{T}^{\infty}\to\mathbb{T}^{\infty}$, представляющих собой суммы линейных обратимых ограниченных операторов, сохраняющих решетку $\mathbb{Z}^{\infty}$, и $C^1$-гладких периодических добавок. Устанавливаются необходимые и достаточные условия, гарантирующие гиперболичность таких отображений (т.е. принадлежность их к диффеоморфизмам Аносова).
Библиография: 15 названий.