Аннотация:
Пусть $E$ – несепарабельное перестановочно-инвариантное пространство и $E_0$ – замыкание множества ограниченных функций в $E$. Работа посвящена изучению элементов пространства $E$, ортогональных подпространству $E_0$, т.е. таких $x\in E$, $x\ne 0$, что $\|x\|_{E} \le\|x+y\|_{E}$ для любого $y\in E_0$. Получена характеризация множества ортогональных элементов $\mathcal{O}(E)$, если $E$ – пространство Марцинкевича или Орлича. Если пространство Орлича $L_M$ рассматривается с нормой Люксембурга, то множество $L_M\setminus (L_M)_0$ является алгебраической суммой множества $\mathcal{O}(L_M)$ и пространства $(L_M)_0$.
Доказано, что всякое несепарабельное перестановочно-инвариантное пространство $E$ такое, что $\mathcal{O}(E)\ne\varnothing$, содержит асимптотически изометрическую копию пространства $l_\infty$.
Библиография: 17 названий.
Ключевые слова:перестановочно-инвариантное пространство, несепарабельное банахово пространство, пространство Орлича, пространство Марцинкевича, ортогональный элемент.