Аннотация:
Из гомотопической теории поверхностей хорошо известно, что объемлющая изотопия не меняет гомотопический тип замкнутой кривой. На языке динамических систем это означает, что любая дуга в пространстве диффеоморфизмов, соединяющая изотопные диффеоморфизмы с инвариантными замкнутыми кривыми из разных гомотопических классов, обязательно претерпевает бифуркации. В работе описан сценарий, меняющий гомотопический тип замыкания инвариантного многообразия седловой точки полярного диффеоморфизма на двумерном торе на любой заданный гомотопически нетривиальный тип. При этом построенная дуга является устойчивой в пространстве диффеоморфизмов и не меняет класс топологической сопряженности исходного диффеоморфизма. Предложенные в работе идеи построения такой дуги для двумерного тора могут быть естественным образом обобщены на поверхности большего рода.
Библиография: 32 названия.