Аннотация:
Получены интегральные неравенства для интегралов от разностей субгармонических функций по мерам Бореля на шарах в многомерном евклидовом пространстве. Эти интегралы оцениваются сверху через произведение характеристики Неванлинны функции на различные характеристики меры Бореля и ее носителя. Основная теорема – критерий о таких оценках – дается с несколькими эквивалентными утверждениями различной природы. Все результаты новые для логарифмов модулей мероморфных функций на кругах в комплексной плоскости. Они содержат в себе как частные случаи все предшествующие результаты, восходящие к классической лемме Эдрея–Фукса о малых дугах. Допускается интегрирование по мерам Бореля с носителем на фрактальных множествах, а оценки в этих случаях даются через меру и обхваты Хаусдорфа носителя меры Бореля. Отдельно отмечены важные в применениях частные случаи функций во всей комплексной плоскости и пространстве, в единичном круге или шаре, а также
интегрирования по длине на подмножествах липшицевых кривых и по площади на подмножествах липшицевых гиперповерхностей.
Библиография: 42 названия.