Аннотация:
Разработаны алгоритмические методы, гарантирующие эффективные оценки сложности для сильно выпукло-вогнутых седловых задач в случае, когда одна из групп переменных имеет большую размерность, а другая – достаточно малую (до сотни). Предлагаемая методика основана на сведении задач такого типа к задаче минимизации выпуклого (максимизации вогнутого) функционала по одной из переменных, для которого можно найти приближенное значение градиента в произвольной точке с необходимой точностью с помощью вспомогательной оптимизационной подзадачи по другой переменной. При этом для маломерных задач предлагается использовать методы эллипсоидов и Вайды, а для многомерных – ускоренные градиентные методы с неточной информацией о градиенте или субградиенте. Для случая очень малой размерности задачи одной из групп переменных (до 5) на гиперкубе достаточно эффективным будет иной предлагаемый подход к сильно выпукло-вогнутым седловым задачам на базе нового варианта многомерного аналога метода Ю. Е. Нестерова на квадрате (метод многомерной дихотомии) с возможностью использования неточных значений градиента целевого функционала.
Библиография: 28 названий.
Ключевые слова:седловая задача, метод эллипсоидов, метод Вайды, неточный субградиент, гиперкуб, многомерная дихотомия.