Аннотация:
Изучаются минимаксные и максиминные задачи на отрезке $[0,1]$ для специального класса функций, представляющих собой суммы с положительными коэффициентами сдвигов фиксированной ядерной функции и достаточно общей внешней полевой функции. Вследствие достаточной общности рассматриваемой нами конструкции наши результаты обобщают теоремы о минимаксе, альтернансе, а также характеризационные теоремы для экстремальных многочленов, полученные ранее в работах Б. Д. Боянова, П. Фентона, Д. Хардина, А. Кендела, Э. Саффа, Г. Амбруса, К. Болла и Т. Эрдейи. Кроме того, мы обнаруживаем неожиданный феномен перемежаемости максимумов на отрезках, что приводит к новым следствиям даже в классической экстремальной задаче Чебышёва.
Библиография: 25 названий.
Ключевые слова:задача о минимаксе, многочлен Чебышёва, весовая задача Боянова, ядерная функция, сумма сдвигов функции.