Аннотация:
В группе Уолла $L_3(D_3)$ от диэдральной группы порядка $8$ с тривиальным характером ориентации указан элемент $x$, являющийся элементом третьего типа в смысле Харшиладзе относительно любой системы односторонних подмногообразий коразмерности $1$, в которой группа препятствий к расщеплению вдоль первого подмногообразия изоморфна $LN_1(\mathbb Z/2\oplus \mathbb Z/2\to D_3)$. Элемент $x$ не реализуется как препятствие к перестройке на замкнутом $\mathrm{PL}$-многообразии. Также доказано, что единственный нетривиальный элемент группы $LN_3(\mathbb Z/2\oplus \mathbb Z/2\to D_3^-)$ детектируется с помощью $Wh_2$-кручения Хассе–Витта.
Библиография: 25 названий.
Ключевые слова:группы Браудера–Ливси, группы Уолла, односторонние подмногообразия, арф-инвариант в коразмерности 1, препятствия к расщеплению, кручение Хассе–Витта.