RUS  ENG
Полная версия
ЖУРНАЛЫ // Математический сборник // Архив

Матем. сб., 2023, том 214, номер 2, страницы 112–142 (Mi sm9773)

Геометрические прогрессии в пространствах с расстоянием, приложения к неподвижным точкам и точкам совпадения отображений

Е. С. Жуковский

Тамбовский государственный университет имени Г. Р. Державина

Аннотация: Рассматривается вопрос: каким свойством должно обладать пространство $X$ с обобщенным расстоянием $\rho_X$, чтобы для действующих в нем отображений были справедливы утверждения типа теорем Банаха и Надлера о неподвижной точке и утверждения типа теоремы Арутюнова о точках совпадения? Показано, что таким свойством является сходимость любой геометрической прогрессии со знаменателем, меньшим $1$, – последовательности $\{ x_i\}\subset X$, удовлетворяющей при некотором $\gamma < 1$ условию $\rho_X(x_{i+1},x_i)\leq \gamma \rho_X(x_i,x_{i-1})$, $ i=1,2,\dots$ . Приведены примеры пространств, обладающих и не обладающих данным свойством. В частности, показано, что требуемое свойство имеет место в полном $f$-квазиметрическом пространстве $X$, если в нем расстояние $\rho_X$ при некотором $\eta\in (0,1)$ удовлетворяет неравенству $\rho_X(x,z) \leq \rho_X(x,y)+(\rho_X(y,z))^\eta$, $x,y,z \in X$, т.е. когда функция $f\colon\mathbb{R}_+^{2} \to \mathbb{R}_+$ задана формулой $f(r_1,r_2)=r_1 + r_2^{\eta}$. А если $f(r_1,r_2)=\max\bigl\{ r_1^{\eta}, r_2^{\eta} \}$, где $\eta \in (0,2^{-1}]$, то для любого $\gamma > 0$ существует $f$-квазиметрическое пространство, содержащее геометрическую прогрессию со знаменателем $\gamma$, не являющуюся фундаментальной. Обсуждается справедливость в $f$-квазиметрических пространствах "правила $0$ или $1$", означающего, что либо любая геометрическая прогрессия со знаменателем, меньшим $1$, является фундаментальной, либо для произвольного $\gamma\in (0,1)$ существует геометрическая прогрессия со знаменателем $\gamma$, не являющаяся фундаментальной.
Библиография: 29 названий.

Ключевые слова: $f$-квазиметрика, неподвижная точка, точка совпадения, геометрическая прогрессия.

MSC: 54E35, 54H25, 47J26, 54C60

Поступила в редакцию: 06.04.2022 и 25.07.2022

DOI: 10.4213/sm9773


 Англоязычная версия: Sbornik: Mathematics, 2023, 214:2, 246–272

Реферативные базы данных:


© МИАН, 2024