Аннотация:
В теории Васильева инварианты узлов конечного порядка описываются в терминах весовых систем – функций на хордовых диаграммах, удовлетворяющих четырехчленным соотношениям. В частности, крашеному многочлену Джонса соответствует весовая система, описываемая в терминах алгебры Ли $\mathfrak{sl}_2$. Согласно теореме Чмутова–Ландо значение этой весовой системы зависит лишь от графа пересечений хордовой диаграммы, что позволяет говорить о ее значениях на графах пересечений.
В настоящей статье мы выводим явные формулы для производящих функций для значений $\mathfrak{sl}_2$-весовой системы на полных двудольных графах и показываем с их помощью, что для полных двудольных графов и некоторого более широкого класса графов выполняется гипотеза Ландо о степени многочлена – значения $\mathfrak{sl}_2$-весовой системы на проекции на примитивные в алгебре Хопфа графов.
В основе доказательства лежат введенная нами алгебра долей и $\mathfrak{sl}_2$-весовая система на долях, тесно связанная с $\mathfrak{sl}_2$-весовой системой на хордовых диаграммах.
Библиография: 14 названий.
Ключевые слова:хордовая диаграмма, доля хордовой диаграммы, $\mathfrak{sl}_2$-весовая система, полный двудольный граф.