Аннотация:
Весовой системой называют функцию на хордовых диаграммах, удовлетворяющую 4-членному соотношению Васильева. По алгебре Ли $\mathfrak{sl}_2$ можно построить простейшую нетривиальную весовую систему. Полученная $\mathfrak{sl}_2$-весовая система принимает значения в пространстве многочленов от одной переменной и полностью определяется рекуррентными соотношениями Чмутова–Варченко.
Хотя определение $\mathfrak{sl}_2$-весовой системы довольно просто, ее вычисления очень трудоемки, поэтому конкретные значения известны лишь для небольшого числа хордовых диаграмм. Для явного вида значений на хордовых диаграммах с полным графом пересечений С. К. Ландо выдвинул гипотезу, которую поначалу удалось доказать лишь для коэффициентов при линейных членах значений весовой системы. Мы полностью доказываем эту гипотезу, пользуясь рекуррентными соотношениями Чмутова–Варченко и введенными нами линейными операторами добавления хорды к доле – подмножеству хорд диаграммы с концами на двух выделенных дугах. Также, опираясь на производящую функцию значений $\mathfrak{sl}_2$-весовой системы на хордовых диаграммах с полным графом пересечений, мы доказываем изоморфность факторпространства долей по модулю рекуррентных соотношений пространству многочленов от двух переменных.
Библиография: 10 названий.
Ключевые слова:хордовая диаграмма, $4$-членные соотношения, $\mathfrak{sl}_2$-весовая система, полный граф, доля хордовой диаграммы.